
duced. The influence of negative reflexivities of the upper and lower bases on the quantity 
is shown in Fig. 3d for adiabatic side walls. The maximum error is observed for absolute- 

ly black surfaces of the bases. 

The method proposed and the computation results are recommended for utilization to esti- 
mate the error in the plane layer approximation when modeling radiation heat transfer in rec- 
tangular chambers. 

NOTATION 

T, absolute temperature; q, radiation flux density; Q, resultant radiation flux; o, 
Stefan--Boltzmann constant; r, surface reflexivity; k, linear attenuation factor; Y, ratio of 
scattering to attenuation coefficients; ~, effective mean cosine of the scattering angle in 
an elementary scattering act; D, transmission function; Z, ray pathlength; a, channel width; 
b, channel height; x, y, coordinates. Subscripts: e, effective radiation; c, intrinsic ra- 
diation; i, lower base of channel cross section; 2, side walls; 3, upper base. 

i. 

. 

3. 

4. 

5. 

6. 
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PROBLEM OF THE NONSTATIONARY STATE OF HEAT- AND MASS-TRANSFER 

PROCESSES IN BINARY GASEOUS MIXTURES 

T. N. Abramenko, E. A. Shashkov, 
O. A. Kolenchits, and A. F. Zolotukhina 

UDC 533.735 

Nonstationary heat- and mass-transfer processes in gaseous mixtures are con- 
sidered, and expressions are obtained for the heat-diffusion ratio and for the 
contribution of diffusion thermal conduction in conductive heat transfer. 

Molecular heat- and mass-transfer processes in gaseous mixtures are characterized by 
effective values of the thermal conductivity and thermal diffusion ratio, and these two (ef- 
fective) characteristics (transfer processes) are mutually related and may differ in value in 
the stationary and nonstationary states. 

Despite the large number of papers published on the subject, the mechanism of the phe- 
nomenon of thermal diffusion in gaseous mixtures is still unclear even in the case of mix- 
tures of monotonic gases. Experimental methods of determining the thermal diffusion con- 
stant of gaseous mixtures are usually stationary, since at the present time there is not even 
a theory which describes the nonstationary state of thermal diffusion. 

Institute of Applied Physics, Academy of Sciences of the Belorussian SSR. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 4, pp. 726-731, April, 1981. Original 
article submitted October 29, 1980. 
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A study of the mechanism of thermal diffusion and refinement of the theoretical model 
of this process in order to improve existing experimental methods of investigating thermal 
conduction in gaseous mixtures are of independent interest, 

In the stationary state the expression for the flow of a mass of binary gaseous mixture, 
e.g., within the framework of the rigorous molecular-kinetic theory, has the form [i] 

Ji (r) = n ~ (r) mim2Dt~ [Vxi (r) + ~ V In T (r)], 
P 

and the thermal-diffusion ratio is defined as 

where 

Ox,(r) _ ~ ,  
aT T (r----) ' (1) 

pDT 
n2mitr~Dt~ 

In the nonstationary state 

Ji(r, t)=-- n2(r, t) mtm~Di~ 
[VX~ (r, t) -t- (x~ (r, t) - -  c~ (r, t)) V In p (r, t). -F t~ V In T (r, t)], 

and the thermal-diffusion ratio is defined as 

axe(r, t) 
OT 

so that ST~ -~--ST2 = S T . 

Then, for mixtures of ideal gases 

STz 

T(r, t) - - ,  (2) 

v l n p ( r ,  t) ] J~ (r, t) = n2 (r, t)pm~m2D~2 (sT - -  tr - -  (xt 0% t) - -  ct (r, t)) V In T (r, t) V In T (r, t), 

and for mixtures of real gases 

p (r, t) V In T (r, t) V In T (r, t). 

In the nonstationary state 7p~= 0: and according to the equation of state of an ideal 
gas, * 

(3) 

p ( T On) p [ (  T One) T OXt]v T 
Vp=--T--1+ ~ VT=---  1+ n T nt OT xi OT (4) 

or 

Here 

Using (5) we obtain 

V In p (r, t)-= xt (r, t) V In T (r, t). 

t ~ * - - - - - x , ( r , t ) [ 1 4 -  01nn~(r,01nT t ) ] .  

CS) 

*A Similar discussion can be carried out for a nonideal gas. 
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0xt (r, t) s~ -  =n*+x i ( r ,  t) vlnp(r, t) , 
0 In T V In T (r, t) 

whence it follows that in the stationary case 

(6) 

s ~ n T : - - x ~ ( r )  [1+  Olnn~(r) ] 
01n T ' 

in the case of a single-component gas s T = 0. 

In the stationary state the reduce flow of heat (in a system of coordinates moving with 
the mean-mass velocity) is described by the relation 

Jq (r) = --X. vT(r), (7) 

and in the nonstationary state [i] 

J$(r, t) - -~ .vT(r ,  t)+p(r,  /)n~[V~(r, t)--V~(r, t)I=--~HvT(r, t). (8) 

Vi--V2: n2~t+ntn2 [ (tcr-sT)+(xt-cO VvInp ] 
Since 

the expression for the thermal conductivity, measured by the nonstationary method, has the 
form 

xn=;<'-}-;~+[( 1 -  s~ )n~ -J- x~--c~n~ VvInp ] l n T  
(9) 

where INT is the contribution of diffusion thermal conduction in the stationary state 

__ - -  ~TKT �9 

T 

In the case of complete heat flow (system of coordinates moving with the mean numerical ve- 
locity) the thermal conductivity is 

xn= x~+x%. (1+ n h{n2--h~m~ I ) [(i - s__+) + x~--c~ vlnp ]. 

[ kT cz T n~ n~ V In T 

According to (9), the contribution of diffusion thermal conduction in the nonstationary 
state for the case of a reduced flow of heat 

and 

Zn T _ %o__%n i,DT (s_~_,x~--c~~, nT V lnTVInp ) (10) 

~n= ~. + (~7T-- ~ZT )*. (11) 

As a rule, the thermal conductivity in the nonstationary state is defined in the form 
[2, 3] 

~n= ~ + ~T exp(--ff~), (12) 

where T is the buildup time of the stationary state. According to (9), in relation (12) 

the term [(I__ sT )+ xl-cl vlnp ] ~T gT vlnT is replaced by exp(--t/T). 

men solving a number of applied problems connected with the problem of heat transfer 
at high temperatures, it is often necessary, when investigating the processes occurring in 
the stationary state, to use experimental data of the properties of the transfer obtained in 
nonstationary measuring systems. For example [4], when determining the effective state of a 

n in *It can be shown that IDT = IDT and = I . 
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gaseous medium for filling incandescent lamps, when optimizing the mode of operation of the 
gas-filled lamps in the stationary state experimental data are necessary on the thermal con- 
ductivity of gaseous mixtures at temperatures of 2500-3500~ which can only be obtained using 
the nonstationary shock-tube method [5]. 

We will make an approximate estimate of the value of k T compared with ST, for which we 
will consider the linearized problem and obtain an expression for the thermal-diffusion ratio 
in the nonstationary state. We will write the system of equations of conservation of energy 
and of the number of particles in the form 

dT J$ where J$ = n 
-- ' -- % v T ,  pep dt V , 

dt -- ~-r  + 
X t -- C I v l n p  ] 

v l n T  vlnT = - -  ~ VT" P 
~ (13) 

For simplicity we will confine ourselves to the one-dimensional case 

9 \ at + v  Ox } Ox ~ z  + ~ - ~  (14) 

The thermal properties of the materials can be approximated by the power relationship 

%n= b(r/ro)n, DI = c(T/To) m, (15) 
where b, c = const. 

Taking (15) into account, system (14) has the form 

a 77- + ~-$f =-T- a , j  + a ~ '  
(oc, oc,) m (or ? o2r 

p -~-+v ax/=-T-~,ax/ + - - "  OxZ (16) 

Since the temperature dependences of the thermal conductivity and thermal-diffusion constant 
are characterized by the same form of behavior, we will assume that m ~ n. Then, according 
to (16) 

a 7 + ~  =b-T~at +~ a, j '  
whence 

aT -g;+ 

The last relation holds if 

=0. 

(17) 

OCl LET[( ST) Xi--Ci vlrlp ] DTCt~ 
O-T- ~ -T- 1 --  + , Le T :  - - ,  t~ tc~ v l n T  p (18) 

o r  

0xi L e [  ] L e = -  , - - ~  ( ~ - - s , ) + ( x t - - c t )  v l n p  ~)i~ * 
aT T V InT ' a (19) 

and finally 

*The ratio of the characteristic diffusion time to the thermal relaxation time is defined by 
the quantity [VP[ = Pg , which for the majority of gaseous mixtures is approximately equal to 
!-i0. 
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Le [gT+(x~_c~ ) vlnp ] 
s ,~  Le--1 v l n T  " 

Assuming in (20) that JTp[ = og, the expression for s T becomes 

Le ( A4 --M  
sT ~ Le-------T , g~ + R IvT[ ] " 

The value of s T was estimated for an equimolar mixture of He and Ar at a temperature 
of 3260K: p = 0 78 kg.m-3,~i~ = 0.87.10 -4 m2.sec -I, k T = 0.0927, %~ = 0.05700 W.m -I K -I 
%DT = 0.00080 W.m-I.K -I, Le = 3.40, giving s T = 0.1313. 

C20) 

NOTATION 

a, thermal diffusivity; Cp, specific heat capacity at constant pressure;~2, interdif- 
fusion coefficient of a binary gaseous mixture; DT, thermal diffusion coefficient; fi, ac- 
tivity coefficient of the i-th component; g, acceleration due to the gravity; hi, enthalpy 

, 

per molecule of the i-th sort; J, mass flow; Jq, reduced heat flux; k, Boltzmann;s constant; 
kT, thermal diffusion ratio in the stationary state; ST, thermal diffusion ratio in the non- 
stationary state; M i and mi, molecular weight and mass of the molecule of the i-th component, 
respectively; n, number density of the molecules; p, pressure; T, temperature; R, universal 
gas constant; t, time; x, coordinate; r, radius vector; x i and ci, molecular and mass con- 
centration of the i-th component of the mixture, respectively; v, velocity; V, diffusion ve- 
locity; %, thermal conductivity; %0, thermal conductivity of the uniform mixture; p, mass 
density. The indices are: ~, stationary state; n, nonstationary state. 
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